p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.14C25, C23.108C24, C42.592C23, C24.473C23, (C4×D4)⋊87C22, D4○(C42⋊C2), C4.40(C23×C4), C2.10(C24×C4), (C4×Q8)⋊83C22, Q8○(C42⋊C2), C4⋊C4.515C23, (C2×C4).160C24, (C2×C42)⋊40C22, D4.24(C22×C4), C22.4(C23×C4), Q8.25(C22×C4), C4○(C22.11C24), (C2×D4).498C23, (C2×Q8).481C23, C22.11C24⋊25C2, C22⋊C4.127C23, C2.1(C2.C25), C23.111(C22×C4), (C22×C4).617C23, (C23×C4).577C22, C42⋊C2⋊104C22, C4○(C23.32C23), C4○(C23.33C23), (C22×D4).579C22, (C22×Q8).482C22, C23.33C23⋊33C2, C23.32C23⋊20C2, C4⋊C4○(C4○D4), (C4×C4○D4)⋊13C2, C4○D4⋊18(C2×C4), (C2×C4○D4)⋊24C4, (C2×D4)⋊53(C2×C4), C22⋊C4○(C4○D4), (C2×Q8)⋊44(C2×C4), C4⋊C4○(C42⋊C2), (C22×C4)⋊42(C2×C4), (C2×C4⋊C4)⋊120C22, C4○D4○(C42⋊C2), (C2×C42⋊C2)⋊50C2, (C2×C4).283(C22×C4), (C22×C4○D4).26C2, (C2×C4○D4).317C22, C42⋊C2○(C42⋊C2), (C2×C22⋊C4).476C22, (C2×C4)○(C23.32C23), C42⋊C2○(C2×C4○D4), SmallGroup(128,2160)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.14C25
G = < a,b,c,d,e,f,g | a2=b2=d2=e2=f2=1, c2=b, g2=a, ab=ba, dcd=fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, ce=ec, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 940 in 770 conjugacy classes, 684 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C2×C42⋊C2, C4×C4○D4, C22.11C24, C23.32C23, C23.33C23, C22×C4○D4, C22.14C25
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, C25, C24×C4, C2.C25, C22.14C25
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6)(2 18)(3 8)(4 20)(5 26)(7 28)(9 29)(10 22)(11 31)(12 24)(13 21)(14 30)(15 23)(16 32)(17 27)(19 25)
(1 23)(2 24)(3 21)(4 22)(5 10)(6 11)(7 12)(8 9)(13 19)(14 20)(15 17)(16 18)(25 29)(26 30)(27 31)(28 32)
(1 3)(2 26)(4 28)(5 18)(6 8)(7 20)(9 11)(10 16)(12 14)(13 15)(17 19)(21 23)(22 32)(24 30)(25 27)(29 31)
(1 15 27 11)(2 16 28 12)(3 13 25 9)(4 14 26 10)(5 22 20 30)(6 23 17 31)(7 24 18 32)(8 21 19 29)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,18)(3,8)(4,20)(5,26)(7,28)(9,29)(10,22)(11,31)(12,24)(13,21)(14,30)(15,23)(16,32)(17,27)(19,25), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,19)(14,20)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (1,3)(2,26)(4,28)(5,18)(6,8)(7,20)(9,11)(10,16)(12,14)(13,15)(17,19)(21,23)(22,32)(24,30)(25,27)(29,31), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,20,30)(6,23,17,31)(7,24,18,32)(8,21,19,29)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,18)(3,8)(4,20)(5,26)(7,28)(9,29)(10,22)(11,31)(12,24)(13,21)(14,30)(15,23)(16,32)(17,27)(19,25), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,19)(14,20)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (1,3)(2,26)(4,28)(5,18)(6,8)(7,20)(9,11)(10,16)(12,14)(13,15)(17,19)(21,23)(22,32)(24,30)(25,27)(29,31), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,20,30)(6,23,17,31)(7,24,18,32)(8,21,19,29) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6),(2,18),(3,8),(4,20),(5,26),(7,28),(9,29),(10,22),(11,31),(12,24),(13,21),(14,30),(15,23),(16,32),(17,27),(19,25)], [(1,23),(2,24),(3,21),(4,22),(5,10),(6,11),(7,12),(8,9),(13,19),(14,20),(15,17),(16,18),(25,29),(26,30),(27,31),(28,32)], [(1,3),(2,26),(4,28),(5,18),(6,8),(7,20),(9,11),(10,16),(12,14),(13,15),(17,19),(21,23),(22,32),(24,30),(25,27),(29,31)], [(1,15,27,11),(2,16,28,12),(3,13,25,9),(4,14,26,10),(5,22,20,30),(6,23,17,31),(7,24,18,32),(8,21,19,29)]])
68 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2Q | 4A | 4B | 4C | 4D | 4E | ··· | 4AX |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C2.C25 |
kernel | C22.14C25 | C2×C42⋊C2 | C4×C4○D4 | C22.11C24 | C23.32C23 | C23.33C23 | C22×C4○D4 | C2×C4○D4 | C2 |
# reps | 1 | 6 | 8 | 6 | 2 | 8 | 1 | 32 | 4 |
Matrix representation of C22.14C25 ►in GL5(𝔽5)
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 3 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 2 | 0 | 4 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 4 | 2 |
0 | 1 | 4 | 0 | 4 |
0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 4 | 3 |
4 | 0 | 0 | 0 | 0 |
0 | 3 | 4 | 3 | 3 |
0 | 3 | 2 | 0 | 2 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 3 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 3 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
G:=sub<GL(5,GF(5))| [1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,1,0,0,1,0,2,1,0,1,0,0,0,0,3,1,4,0],[1,0,0,0,0,0,1,1,0,0,0,0,4,0,0,0,4,0,2,4,0,2,4,3,3],[4,0,0,0,0,0,3,3,0,0,0,4,2,0,0,0,3,0,4,3,0,3,2,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,3,0,0,4],[4,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3] >;
C22.14C25 in GAP, Magma, Sage, TeX
C_2^2._{14}C_2^5
% in TeX
G:=Group("C2^2.14C2^5");
// GroupNames label
G:=SmallGroup(128,2160);
// by ID
G=gap.SmallGroup(128,2160);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,387,1123,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=e^2=f^2=1,c^2=b,g^2=a,a*b=b*a,d*c*d=f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*e=e*c,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations